Gemini TA3 Call for Access – P2 2019/20

The following information provides guidance for the Gemini TA3 experimental area for the 2019/20 proposal calls. It is recommended that you discuss your laser and experimental requirements with the appropriate CLF personnel prior to submission of your proposal.

Overview

To maximise scientific output, we would like to operate Gemini TA3 in **one** configuration during the whole period. This allows a common set-up to be arranged at the start to install and test the majority of the apparatus. Experiments with similar layouts will then be scheduled consecutively with a short break between to allow facility access for changeover.

Please contact Gemini staff to clarify any questions about your proposal. We request the applicants to use one of layouts described below. Any deviations from these layouts must be agreed with Gemini staff prior to submission.

Current Gemini specifications

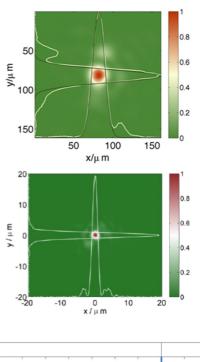
Main Beams: North and South available a. Energy: ~13-14 J on South

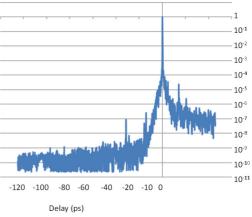
~ 13-14J on North

b. Pulse length: 40-45 fs,

c. Beam diameter: 15 cm diameter


d. Focal spot 1/e² radius: (using adaptive opticsimages on the right)


F/20: 16.7μm F/2: 1.6 μm


e. A close-in contrast scan is shown below.

The contrast parameters are:

<10⁻¹⁰ ASE level (ns) <10⁻⁷ prepulse contrast (ps) < 10⁻⁴ at 1ps

Science & Technology Facilities Council Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX United Kingdom

Permanent beam and alignment diagnostics available:

- a. A double plasma mirror system to improve the picosecond contrast to 10⁻⁶ at 1ps
- b. 10x, 20x and 50x magnification long working distance Mitutoyo objective lenses for focal spot imaging
- c. Adaptive optics on both beam lines
- d. Solid target positioning system (based on rear surface illumination)
- e. Back-scatter spectrum analysis for both beamlines
- f. Input Far field and near fields
- g. Overhead imaging of target chamber centre
- h. Single shot grenouille (model 8-10) for pulse length measurement after interaction
- i. All relevant laser parameters displayed on eCAT on a shot-to-shot basis.

Plasma diagnostics available:

- a. Thomson ion spectrometers
- b. Electron spectrometer (inside chamber/outside)
- c. Flat field spectrometer
- d. X-ray crystal spectrometers
- e. X-ray pinhole camera
- f. Optical spectrometers
- g. Solid target reflectivity monitors

Permanent target mounts/drives available:

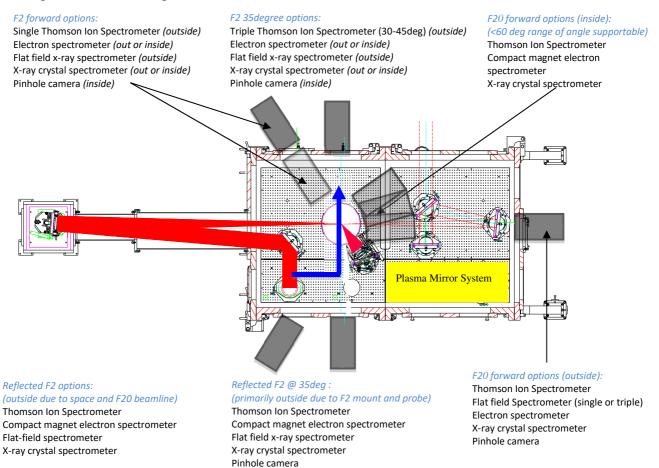
- a. Wide variety of standard motorised and manual stages
- b. Custom built mounts on request (subject to budgetary constraints)
- c. Thick and thin film target wheel, x-y-z and rotary drives. Holding array targets.
- d. Standard gas jet and capillary mounts.

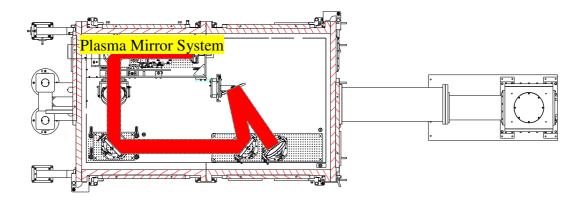
Mode of operation:

- a. The main optical layout will be built and tested in pre-setup weeks
- b. All diagnostics, cables etc. will be tested in pre-setup weeks
- c. Weekly system tuning: To ensure reliability of the system during the operations-heavy weeks, we may require up to 50% of a day (preferably Mondays) to tune up the system. All lost hours will be compensated by providing operational support during out-of-office hours.
- d. All non-standard diagnostics need to be discussed and agreed with the concerned CLF staff prior to proposal submission

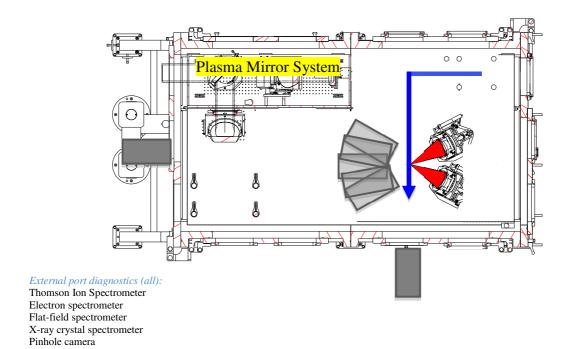
Feasible Experimental Geometries

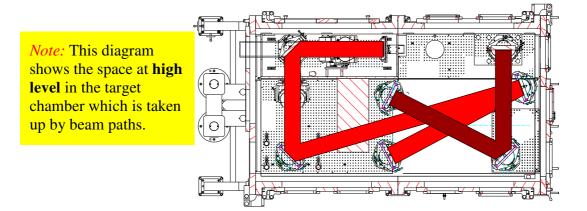
Proposed options for the configured access geometry are shown below.


Please contact Gemini staff if your proposal has requirements that are not covered by the options outlined here. For other focusing geometries please get in touch with Gemini staff as soon as possible.


PLEASE NOTE: The plasma mirror system is now housed in a separate chamber.

(1) F/20 (South beam) with F/2 (North beam): 120 or 90 degrees between beams.


Diagnostic Location Options


Raised level beam transport is shown below to aid planning of out of plane diagnostics.

(2) F/2 (South beam) with F/2 (North beam): Small angle or 90 degrees between beams.

Raised level beam transport is shown below to aid planning of out of plane diagnostics.

(3) F/20 (south beam) + F/20 (north beam)

Apart from these standard configurations, there **may** be an option of using F/20 + F/20 with 120 degrees between them or F/20 and F/2 (with a 20mm central hole) in co- or counterpropagating geometry. Applicants must contact Gemini staff if they are considering either of these options.

(4) **F/40** (south beam)

In addition to this, we have tested an F/40 focusing geometry as the long-focus option in TA3. As it involves operating very close to the damage threshold of optics, please get in touch with Gemini staff if you are interested in using this geometry